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The TapRecruit Hierarchy of Recruiting Needs

Time-to-fill is slow

>120 days for Tier 1 City

Candidate pool is not diverse

Few applications from women and POC

Wrong type of candidates

A mid-level role is only attracting fresh grad apps
Hiring team wants finance exp. but attracting programmers

Not enough applications

Junior Jobs: <30 apps in Tier 1 City
Mid-Level Jobs: <20 apps in Tier 1 City
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Data Scientist
Hooli.xyz - Hooli HQ

Hooli is looking for a data scientist
to join a team passionate about
Marketing Analytics for our suite of
media products. You will work with
internet-scale data across numerous
customer touch points, developing
capabilities tied to audience...
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Junior

Programming
Data & Analytics
Data Visualization

Python
Hadoop
SQL

BigTech
Media Technology
Fortune500

R
Tableau

Mountainview, CA
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Making Recruiting Reproducible (Again?)
requires Reproducible Workflows

tapRecruit

Data cleanup scripts R Markdown notebooks

- Integrity checking - Visualizing distributions
- Company-specific data

Basic data transformation transformations

- Appropriate factor levels

Graph templates Graphs for reporting
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Making Recruiting Reproducible (Again?)
requires Reproducible Workflows
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successful job summary <- df %>%
group by (successful search, seniority) %>%
summarize(’'TotalApps’ = median(total),
'PhoneScreen' = median(qualified),
'Interview' = median(interviewed))

Applicants by Stage

Jobs that do not result in an offer start with fewer

candidates at the start of the funnel.
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Female Applicants by Stage

Jobs without offers to female applicants show female
representation issues throughout the funnel.
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